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Analysis of data from a direct simulation of statistically steady homogeneous 
turbulence suggests that the vorticity tubes, which constitute the main structure of the 
vorticity field, are produced by shear instabilities. This is confirmed by a decay 
calculation, in which vorticity sheets appear at first, and then roll up to form the first 
tubes. These instabilities seem to be at least as important as vortex stretching in 
transferring energy from large to small scales. 

1. Introduction 
In a previous paper (Vincent & Meneguzzi 1991, called Paper I in the following), we 

presented some results of a direct simulation of statistically steady homogeneous 
turbulence computed on a 2403 grid, with periodic boundary conditions, and 
deterministic forcing on a few large-scale modes. The Reynolds number R, based on 
the integral scale L and the r.m.s. velocity li0 was x 1000, while R,, based on the Taylor 
microscale h and zjo, was z 150. The integration lasted more than 60 eddy turnover 
times (this time is defined as L/u,). Refer to Paper I for definitions and details. 

Our calculation confirmed the previous result by Siggia (1981) and others (Kerr 
1985; She, Jackson & Orszag 1990) that the flow is organized in very elongated 
vorticity tubes. In addition, given our larger Reynolds number, we could show that 
these tubes are not limited to the dissipation-scale domain, but that they involve the 
inertial range scales as well, up to the integral scale L. 

Paper I was concerned with the description of these structures and with the statistical 
properties of the flow, but did not attempt to answer questions about their dynamics: 
how they are produced in the first place, how they evolve and interact with each other, 
what is their typical lifetime, and how they are finally dissipated. Another question not 
dealt with is the importance of vorticity stretching, and the way these tubes reach such 
lengths. One would also like to know the role ofThese structures in the energy cascade 
through which kinetic energy is, on average, transferred from large to small scales. In 
the present work, we try to shed some light on these questions. 

For this purpose, we have reanalysed the results of the calculation of Paper I, with 
particular attention paid to the time evolution of the vorticity structures of the flow. 
These results constitute an important data base, with a total of 260 complete stored 
velocity fields, representing 60 large-eddy turnover times of a statistically steady space- 
periodic turbulent flow (see Paper I for definitions). Let us call this calculation ‘Run 
A’. In addition, in order to isolate the mechanism of vorticity tube generation, we have 
performed a decay calculation, at a resolution of 256’, with a random initial condition 
involving large scales only, which we call ‘Run B’. We first discuss the mechanism of 
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vorticity tube generation, then the vortex stretching and the role of these tubes in the 
inertial-range casade. 

2. The mechanism of vorticity tube generation 
To visualize the vorticity field in three dimensions, we plot a perspective view of the 

field represented by arrows on a three-dimensional grid, as was done in Paper 1. Only 
vectors with modulus above a certain threshold are plotted. Control of this threshold 
helps the observer to follow a given structure. In Paper I, it was conjectured that the 
vorticity tubes observed are generated by shear instabilities. When running a film 
obtained with this type of visualization, this is immediately suggested by the fact that 
the tubes often appear in pairs or in groups of several that are approximately parallel, 
moving in the same plane, in a direction perpendicular to their axis. One also observes 
a succession of tube formations with approximately the same alignment and in the 
same area of the fluid. An example of this is given by figure 1. Figure 1 (b) displays the 
same view of the vorticity field as figure 1 (a) a little more than one turnover time later. 
The tubes marked A, B, C, D are seen to move in a direction perpendicular to their 
axis, while D and E are merging. 

The tubes appear with a finite length above our threshold. During their lifetime, they 
are often clearly seen to increase in length, by a factor two or three. This implies that 
the shear instabilities occur in a zone of the fluid submitted to strong stretching. 

A precise definition of the typical tube lifetime is difficult owing to the need to use 
an amplitude threshold. In figure 1, the threshold vorticity amplitude is 55, while the 
maximum vorticity is 223. (Our units are such that the periodic box size is 2n, the r.m.s. 
velocity is z 1, and the turnover time is also zz 1 .) If this threshold is held fixed in time, 
the tubes appear with a finite length and can be followed for several turnover times 
(typically 5 ) ,  and then disappear. The true lifetime of the structures is probably twice 
as large. The tubes are therefore ‘coherent structures’ in the sense that they definitely 
last longer than one turnover time. 

In order to investigate the mechanism of production of vorticity, we explore in more 
detail a sphere extracted from the basic 2403 cube of run A, 80 grid points in diameter, 
centred near tubes A, B, C, D of figure 1. Figure 2 (a, b) shows the vorticity field in this 
subdomain at two different times, close to those of figure 1. The large tube at the centre 
of figure 2(b) is seen to be the result of the merging of previously parallel tubes which 
seem to originate from the same shear zone. This is shown more clearly in figure 3, 
which displays a different view of the flow detail of figure 2(a), a view approximately 
along the axis of the parallel tubes. One can see the velocity in a plane perpendicular 
to the tubes. 

This vortex merging leading to a stronger vorticity structure is generally the origin 
of the largest tubes observed. Some of them have undergone several mappings. The 
phenomenon seems much less important for the large number of medium size of tubes. 

In order to better isolate the mechanism of tube formation, we have performed the 
decay run B, at resolution 25fj3. Like in Paper I, we solve the Navier-Stokes equation 
with periodic boundary conditions by a Fourier pseudo-spectral method, but with no 
forcing term. The initial condition is a random field with only a few small-wavenumber 
components. Initially, the vorticity is very small. When one watches the evolution of 
the vorticity field above a fixed threshold, the first velocity structures which appear are 
pancake-like zones, which flatten with time. The same structures are seen in solutions 
of the Euler equation (Brachet et al. 1992; Pumir & Siggia 1991; R. Kerr and J. R. 
Herring 1992, private communication). The flattening leads to the appearance of 
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FIGURE 1. (a) View of the vorticity field: vorticity vectors are reprcsented by arrows, here too small 
to be seen individually. Only vectors with modulus above a certain threshold are displayed. The tubes 
marked A, B, C, D, E are approximately parallel. (6) The same as (a) a little more than one turnover 
time later. Note the parallel motion of tubes A, B, C, D and the merging of the tubes D and E. 

sheets, which tend to bend and roll up, producing the first vorticity tubes. During this 
process, the vorticity is observed to increase. Therefore, the shear instability is 
accompanied by vortex stretching. An example of this process is shown in figure 4(a ,  b) 
(plate 1). The colour scale is kept constant in time, dark blue indicating larger vorticity 
vectors than light blue, and red even larger. The tips of the vectors’ are shown by white 
dots. The same conclusion was reached by Brachet ef al. (1983) in their study of the 
solution of the Navier-Stokes equations with a Taylor-Green vortex as initial 
condition. A self-similar model of the flattening of the vorticity zones leading to sheets 
is presented in Brachet et al. (1992). Vorticity sheets rolling-up to form tubes are also 
seen in the statistically steady-state run (run A), but they are smaller and subjected to 
strong perturbation from the surrounding vortices. 

A model of turbulence by Lundgren (1982) involves spiral structures around 
vorticity tubes, generated by merging of several tubes. In what we see, there is in some 
cases a spiral structure due to the rolling up of a vorticity sheet, but this a transient 
phase, after this structure seems to be forgotten. Indeed, we have examined (Paper I) 
the structure of many such tubes and the vorticity profile across them does not display 
a series of spikes, as expected if they were rolled-up sheets. Further evidence supporting 
this conclusion is provided by the distribution of dissipation rate in space. Figure 5 
(plate 2) shows the large vorticities in green and large dissipation rates in red. One can 
see that the dissipation occurs in the vicinity of but outside the vorticity tube cores. If 
these cores had a spiral structure, the corresponding strong shear layers would show 
up in pictures of the dissipation rate. After the roll-up phase leading to a vorticity tube, 
the viscosity probably destroys the spiral structure and the resulting vortex core has an 
approximate solid-body rotation. The spiral structure proposed by Lundgren therefore 
exists in some cases but during a time much shorter than the typical vorticity tube 
lifetime. Our conclusion about the dissipation being around the vorticity tubes has 
already been reached by Kerr (1985) and Brachet (1991). 
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FIGURE 2. (a) Detail of the vorticity field showing two approximately parallel tubes; with a secondary 
counter-rotating tube between them. (b)  The same vorticity region as (a) one turnover time later. The 
three vorticity tubes of (a) have merged into one larger tube. 
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(a) 

Plate 1 

FIFLJRE 4. (a) Detail of the \orticity field of run B, at early times, showing several curved vorticity sheets. Dark 
blue indicates larger vorticity than light blue, and red even larger. (h) Same as (a) a few turnover times later. 
The first tubes have appeared, as a result of the rolling-up of some of the vorticity sheets, and the vorticity has 
increased. 

VINCENT & M E N E G K ' / ~ I  (Facing p .  248) 
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FIGURE 5. Detail of the vorticity field of run A, in green, with the regions of large dissipation shown in red. 

FIGURE 8. Detail of the velocity field after filtering in Fourier space so as to retain a fraction of the inertial 
domain. In red: low-wdvenumber range of the inertial domain; in green: intermediate range; in yellow: high- 
wavenumber mge .  

VINCENT & MENEGUZZI 
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FIGURE 3. The velocity field in a plane approximately perpendicular to the vorticity tubes. 

We have computed the eigenvectors and eigenvalues of the strain tensor around 
these unstable vorticity sheets. As in paper I, A,, A, and A, are the eigenvalues of the 
rate-of-strain tensor S,, = &(a, vj + 8, vJ, in ascending order, with A, always negative and 
A, always positive, and el, e,, e3 the eigenvectors associated with A,, A,, A, respectively. 
(V. v = 0 implies A, + A ,  + A, = 0). In pure shear, for instance u,  = y ,  uy = u, = 0, one 
would have e,  and e, at 45" in the (x,y)-plane, i.e. el = (1, - l ,O) ,  e,  = (1,1,0), and 
e,  = (O,O, 1). If a straining field is present, for instance u, = ax+y, uy = -ay,  v, = 0, 
for large values of a, e,  will be close to the x-axis, and el close to the y-axis. 

What we observe in run B is the following. At early times, el is oriented 
perpendicularly to the vorticity pancakes, while the vorticity is parallel to the pancakes 
and sometimes to e,. At a fraction of a turnover time later, e,  is still perpendicular to 
the pancake, but the vorticity has become aligned with the intermediate eigenvector e2. 
At roughly two turnover times, the pancake has become a thin vorticity sheet, which 
is beginning to bend, and the vorticity is still aligned with e,. But we observe that e, 
and e,  are now approximately at 45" respect to the plane of the sheet. So the picture 
is that of an initial straining phase which produces a vorticity sheet, with the shear 
increasing and becoming dominant in a second phase, followed by the rolling up of the 
sheet. This scenario was in fact suggested some time ago by Betchov (1976). 

In this rolling-up phase leading to tube formation, w is already aligned with the 
intermediate eigenvector e,. Therefore, the general alignment of the intermediate strain 
eigenvector with e,  found previously by Kerr (1985) and ourselves in Paper I happens 
long before the vorticity tube production. 
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FIGURE 6. Distribution of the angle between the vorticity field and the rate of strain eigenvectors. 
Continuous line : large vorticities ; dashed line : small vorticities. (a) Eigenvector e, associated with the 
smallest eigenvalue A, (always negative); (b) eigenvector e,, associatcd with the intermediate 
eigenvalue A,; ( c )  eigenvector e3, associated to the largest eigenvalue A3 (always positive). 

3. Vortex stretching 
As already mentioned, the vorticity tubes appear with a finite length, and their length 

is subsequently increased by stretching due to velocity gradients. Observing many 
tubes, we find that their length increases by a factor 2 or 3 during their lifetime. Jt is 
known that a line element is stretched on average by homogeneous isotropic turbulence 
(Cocke 1969; Orszag 1970, 1977). This is probably connected with the fact that the 
intermediate strain eigenvalue A,, which corresponds to the eigenvector generally 
parallel to the vorticity, is more often positive than negative. However, it seems that 
the most intense tubes result from instabilities of vorticity sheets produced by a strong 
strain, a more systematic effect. 

A quantitative measure of this alignment of vorticity with A, was presented in Paper 
I by plotting the distribution of the cosine of the angles between the vorticity o and the 
strain eigenvectors e,. These distribution functions are very similar to the ones found 
in experiments by Tsinober, Kit & Dracos (1992), and numerically by Ashurst et al. 
(1987). It was not clear why the distribution of o.e3/1011e31 is so much flatter than the 
others. In order to clarify this point, we have recomputed these distributions after 
splitting the set of vorticity values into large and small vorticities, i.e. o > o,, and 
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FIGURE 7. Tip of the vorticity vector in the reference frame (el, e2, e,). (a) Projection on the plane 
(e,,e,) for A, > 0. (6) Same as (a) but for A, < 0. (c) Projection on the plane (el,e3). 

w < wo. The value of w, is 13 while the maximum w value is 223. The volume in space 
occupied by the first set is 36%. The distributions are shown on figure 6(a-c). The 
alignment of o with e,  is more pronounced in large-vorticity regions than in the plot 
for the general field (see Paper I). For small vorticities, the distribution is flat, and there 
are definitely regions where w and e3 are parallel. In order to understand why the 
distribution of w.e3/1wIle,l is so much flatter than the other two, we have plotted 
(figure 7 )  the tip of the vorticity vector w in the reference frame (el,e2,e3). The 
preferential alignment of o with e, is clearly visible, as is the fact that A, is more often 
positive than negative. Figure 7 ( c )  shows that w is more aligned with e, than with el 
for small w, but that there is little preferential alignment with one or the other for 
large o. 

Physically, we interpret this as meaning that although the vorticity, in large-vorticity 
regions, is more often aligned with the intermediate eigenvector e,, random stretching 
nevertheless produces some vorticity along the main positive stress direction e,. The 
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Time 71 )I2 73 
5.92 -285 344 557 

14.92 -404 438 775 
TABLE 1 

fact that large- and small-vorticity regions have different alignment produces a flat 
distribution when both are included in the statistics. In decay calculations, where the 
random stretching effect does not have enough time to become important, the 
alignment of o with e, is much clearer, as shown in Brachet et ai. (1992). 

To make this more quantitative, we have computed, like Tsinober et ai. (1992), the 
rate of enstrophy production y = S,, o, oj. But in addition we have also computed 
separately the contributions of the three principal strain directions. The production 
rate in direction et is given by 

with y1 + 4,  + y3 = 71, the eigenvectors e, having modulus 1. Table 1 gives the values of 
7, at two different times. One can see that the enstrophy is produced in approximately 
equal amounts in directions 2 and 3 ,  despite the fact that the stretching is much larger 
along direction 3. 

A scenario was proposed by Ashurst et ai. (1987) in which vorticity tubes are created 
at random by the mechanism of vorticity stretching, and then the induced stress tensor 
is such that the alignment of o with e3 shifts to an alignment with e,. If this picture were 
correct, one would expect T~ to be dominant. 

Our visualizations suggest another possibility. If the main mechanism of vorticity 
tube production is shear instability of strained vorticity sheets, the stress tensor is, 
when this instability develops, such that o is oriented in the e, direction. In this case, 
y3 is not expected to be much larger than qs,  which is what we observe. 

y L  = h,(w.eJ2, 

4. The role of vorticity tube formation in the energy cascade 
It was shown in Paper I that, after filtering the vorticity field in Fourier space so as 

to retain only the inertial-range scale, the field in physical space still appears organized 
in vortex tubes, When we look at the time evolution of the velocity and vorticity fields 
of run A after this kind of filtering, we observe essentially the evolution of the external 
part of the vorticity tubes. 

To analyse the inertial range velocity field in more detail, we have taken several 
Gaussian filters in Fourier space, separating the inertial domain in three zones, and we 
have transformed the three fields back to physical space. Figure 8 (plate 2) shows a cut 
of the velocity field of run A. The low-wavenumber part of the inertial domain 
(k  = 10) is shown in red, the intermediate part (k  = 15) in green, and the higher 
wavenumber part (k 2 20) in yellow. The figure suggest that the rolling-up of vorticity 
sheets plays an essential role in the energy cascade from large to small scales. 

This picture is somewhat at variance with the traditional view of a Richardson 
many-step cascade, in which large eddies produce smaller eddies, smaller eddies 
produce even smaller ones, and so on. On the contrary, what we observe here - the 
production of vorticity sheets and their rolling-up to form vorticity tubes - is a one- 
step process, with a strong correlation between small and large scales. The small-scale 
vorticity constitutes the core of the vorticity structures seen in pictures of the inertial 
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domain. The resulting field is much more intermittent than what would be obtained in 
a many-step process. But an inertial range is definitely present in the energy spectrum, 
with an approximately k-g slope, as shown in Paper I. 

One could object that our Reynolds number is not very large (1000) and that the 
Richardson cascade picture is envisaged in the limit of infinite Reynolds number. This 
may be true, but an experiment at R = 80000 (Douady, Coudet & Brachet 1991) also 
shows the appearance of very long vorticity tubes generated by a shear zone, very 
similar to our smaller-R results, and which are also suggestive of a one-step process. 

Of course, one expects the formation of secondary vortices induced by the strong 
shear around the large tubes observed. Secondary vorticity tubes are indeed observed, 
approximately antiparallel to the primary one. An example is seen in figure 2(a) .  

The tube mergings we observe also contribute to the energy cascade to small scales. 
They probably also involve some energy backscatter from small to large scales, since 
the final product is a larger structure. 

5. Conclusions 
Our visualizations strongly suggest shear instabilities of thin vorticity sheets as the 

mechanism of vortex tube generation in three-dimensional turbulent flow. The general 
picture is that encounters between different parts of the fluid will inevitably produce 
shear layers (Betchov 1976). These sheets are unstable to vorticity tube formation, in 
typically one turnover time. The tubes are more stable than the sheets, and are 
therefore the dominant structures seen in a picture of steady-state turbulent flow. The 
alignment of vorticity with the intermediate strain eigenvector is found to exist before 
the shear instability develops, and is the result of vorticity sheet production by strong 
strain. It is not a consequence of tube formation. 

The enstrophy production rates in the principal strain tensor directions as well as the 
visualization of the inertial-range velocity field in several bandwidths suggest that both 
the vorticity sheet production phase and the succeeding shear instability play an 
essential role in the energy cascade from large to small scales. To make this conclusion 
more quantitative, and assess the relative importance of these mechanisms, a more 
detailed study of the energy transfer (locally in space) is necessary. 

We thank P. L. Sulem for numerous discussions and suggestions. All our calculations 
were done on the Cray-2 of the CCVR (Centre de Calcul Vectoriel pour la Recherche), 
Ecole Polytechnique, Palaiseau, France, thanks to a grant by CNRS (Centre National 
de la Recherche Scientifique). 
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